http://segodnyaprazdnik.com/prazdniki-2-aprelya-sobyitiya-istoricheskie-dni-imeninyi.html
Колебания Упругая волна Когерентные источники Угловая дисперсия абсолютно чёрное тело Монохроматическая волна момент импульса Атом водорода Уравнения движения http://segodnyaprazdnik.com/prazdniki-2-aprelya-sobyitiya-istoricheskie-dni-imeninyi.html Полевые уравнения проводник с током в магнитном поле Электродвижущая сила

Для спектра поглощения справедлива следующая закономерность: атомы вещества поглощают свет как раз тех частот, которые они испускают в нагретом состоянии; поэтому линии в спектре поглощения данного химического элемента расположены в тех же местах спектра, что и линии в спектре его излучения.

Магнитное поле в веществе


Атомы могут обладать магнитными моментами. Магнитные моменты атомов связаны с моментом импульса электронов. Уже была получена формула , где  – момент импульса частицы создающей ток. В атоме мы имеем положительное ядро и электрон е, вращающийся по орбите, на самом деле, в своё время мы увидим, что эта картина не имеет отношения к реальности, так нельзя представлять электрон, который вращается, но остаётся то, что электрон в атоме обладает моментом импульса, и этому моменту импульса будет отвечать такой магнитный момент: . Наглядно, заряд, вращающийся по окружности, эквивалентен круговому току, то есть это элементарный виток с током. Момент импульса электрона в атоме квантуется, то есть может принимать только определённые значения, вот по такому рецепту: , , где вот эта величина  – это постоянная Планка. Момент импульса электрона в атоме может принимать лишь определённые значения, мы сейчас не будем обсуждать, как это получается. Ну, и вследствие этого магнитный момент атома может принимать определённые значения. Эти детали нас сейчас не волнуют, но, по крайней мере, будем представлять, что атом может обладать определённым магнитным моментом, есть атомы, у которых нет магнитного момента. Тогда вещество, помещённое во внешнее поле намагничивается, а это означает, что оно приобретает определённый магнитный момент вследствие того, что магнитные моменты атомов ориентируются преимущественно вдоль поля.

Элемент объёма dV приобретает магнитный момент , при чём вектор  имеет смысл плотности магнитного момента и называется вектором намагничивания. Имеется класс веществ, называемых парамагнетики, для которых , намагничивается так, что магнитный момент совпадает с направлением магнитного поля. Имеются диамагнетики, которые намагничиваются, так сказать, «против шерсти», то есть магнитный момент антипараллелен вектору , значит, . Это более тонкий термин. То, что вектор  параллелен вектору  понятно, магнитный момент атома ориентируется вдоль магнитного поля. Диамагнетизм связан с другим: если атом не обладает магнитным моментом, то во внешнем магнитном поле он приобретает магнитный момент, при чём магнитный момент антипараллелен . Этот очень тонкий эффект связан с тем, что магнитное поле влияет на плоскости орбит электронов, то есть оно влияет на поведение момента импульса. Парамагнетик втягивается в магнитное поле, диамагнетик выталкивается. Вот, чтобы это не было беспредметно, медь – это диамагнетик, и алюминий – парамагнетик, если взять магнит то алюминиевая лепёшка будет притягиваться магнитом, а тогда медная будет отталкиваться. 

Понятно, что результирующее поле, когда вещество внесено в магнитное поле, это есть сумма внешнего поля и поля, создаваемого за счёт магнитного момента вещества. Теперь обратимся к уравнению , или в дифференциальной форме . Теперь такое утверждение: намагничивание вещества эквивалентно наведению в нём тока с плотностью . Тогда это уравнение мы напишем в виде .

Проверим размерность: М – это магнитный момент в единице объёма , размерность . Когда вы пишете какую-нибудь формулу, то размерность всегда полезно проверять, особенно если формула эта собственной выводки, то есть вы её не срисовали, не запомнили, а получили.

Намагниченность характеризуется вектором , он так и называется вектор намагниченности, это плотность магнитного момента или магнитный момент в единицу времени. Я говорил, что намагниченность эквивалентна появлению тока , так называемого молекулярного тока, и это уравнение эквивалентно такому: , то есть мы можем считать, что нет намагниченности, а есть такие токи. Зададимся таким уравнением: , - это настоящие токи, связанные с конкретными носителями зарядов, а  это токи, связанные с намагниченностью. Электрон в атоме это круговой ток, возьмём область внутри, внутри образца все эти токи уничтожаются, но наличие таких круговых токов эквивалентно одному общему току, который обтекает этот проводник по поверхности, отсюда и такая формула. Перепишем это уравнение в таком виде: , . Этот  тоже отправим влево и обозначим , вектор  называется напряжённостью магнитного поля, тогда уравнение приобретёт вид . (циркуляция напряжённости магнитного поля по замкнутому контуру) = (сила тока через поверхность этого контура).

Ну, и, наконец, последнее. Мы имеем такую формулу: . Для многих сред намагниченность зависит от напряжённости поля, , где  – магнитная восприимчивость, это коэффициент, характеризующий склонность вещества к намагничиванию. Тогда эта формула перепишется в виде ,  – магнитная проницаемость, и мы получаем такую формулу: .

Если , то это парамагнетики,  - это диамагнетики, ну, и, наконец, имеются вещества, для которых это  принимает большие значения (порядка 103),  - это ферромагнетики (железо, кобальт и никель). Ферромагнетики замечательны тем. Что они не только намагничиваются в магнитном поле, а им свойственно остаточное намагничивание, если он уже однажды был намагничен, то, если убрать внешнее поле, то он останется намагниченным в отличии от диа- и парамагнетиков. Постоянный магнит – это и есть ферромагнетик, который без внешнего поля намагничен сам по себе. Кстати, имеются аналоги этого дела в электричестве: имеются диэлектрики, которые поляризованы сами по себе без всякого внешнего поля. При наличии вещества наше фундаментальное уравнение приобретает такой вид:

,

,

.

 

А вот ещё пример ферромагнетика, бытовой пример магнитного поля в средах, во-первых, постоянный магнит, ну, и более тонкая вещь – магнитофонная лента. Каков принцип записи на ленту? Магнитофонная лента - это тонкая лента, покрытая слоем ферромагнетика, записывающая головка - это катушка с сердечником, по которой течёт переменный ток, в зазоре создаётся переменное магнитное поле, ток отслеживает звуковой сигнал, колебания с определённой частотой. Соответственно, в контуре магнита имеется переменное магнитное поле, которое меняется вместе с этим самым током. Ферромагнетик намагничивается переменным током. Когда эта лента протягивается по устройству такого типа, переменное магнитное поле создаёт переменную э.д.с. и воспроизводится опять электрический сигнал. Это ферромагнетики на бытовом уровне.

Квазистационарные поля

Приставке «квази-» русский эквивалент «якобы», то есть имеется в виду, что поле переменное, но не очень. Теперь мы полагаем, наконец, , но оставим одно: , чтобы не учитывать влияния электрического поля на магнитное. Уравнения Максвелла приобретают такой вид:

 

1)      ,

2)      ,

3)      ,

4)     

 

3) и 4) уравнения не изменились, это означает, что связь магнитного поля с токами в каждой точке осталась такой же, только мы теперь допускаем изменяющиеся со временем токи. Ток со временем может меняться, но связь магнитного поля и тока остаётся та же самая. Поскольку магнитная индукция   связана с током линейно,   будет меняться синхронно с током проводника: ток нарастает, магнитное поле нарастает, но связь между ними не меняется. А вот для электрического поля появляется новшество: циркуляция связана с изменением магнитного поля.

НЕЙТРИНО – это легкая (возможно, безмассовая) электрически нейтральная частица, участвующая только в слабом и гравитационном взаимодействиях. Отличительное свойство нейтрино – огромная проникающая способность. Считается, что эти частицы заполняют все космическое пространство со средней плотностью около 300 нейтрино на 1 см3.

Колебания, оптическая физика Электромагнитное поле Электромагнитное взаимодействие