Курсовые и лабораторные. Примеры выполнения. Практическая и теоретическая подготовка к экзамену

Статически неопределимый стержень кусочно-постоянного сечения Рассмотрим стержень кусочно-постоянного сечения, закрепленный с двух концов, под действием продольных сосредоточенных сил Fk  и собственного веса 

Для определения внутренних усилий и перемещений в стержне его разбивают на участки. Границами участков являются сечения стержня, где приложены сосредоточенные внешние силы или меняется площадь поперечного сечения стержня. Рассматриваемый стержень состоит из четырех участков. Пронумеруем граничные сечения стержня, присвоив точке В нулевой номер. В этом случае номера участка будет совпадать с номером верхнего сечения участка стержня. Очевидно, в основной системе перемещение верхнего сечения стержня в точке  А равно нулю, так как он закреплен.

Для построения эпюры нормальных напряжений вдоль оси стержня, определим значения напряжения в опорных сечениях

Расчет систем стержней, соединенных с недеформируемым элементом

Расчет стержневой системы по предельному состоянию Расчет по предельному состоянию позволяет определить несущую способность конструкцию, т.е. предельную нагрузку, при которой конструкция теряет свою работоспособность.

Геометрические характеристики сечений При изучении напряженно деформированного состояния центрально- растянутых стержней использовалась единственная геометрическая характеристика – площадь поперечного сечения A. Изучение напряженно-деформированного состояния стержней, работающих на изгиб, кручение и другие виды сопротивления, выявляет новые интегральные характеристики сечений. Для определения напряжений и деформаций стержней необходимо знать численные значения этих геометрических характеристик. Следовательно, необходимо уметь определять эти характеристики, знать их свойства.

Определяют геометрические характеристики сечения – осевые, полярный и центробежный моменты инерции сечения относительно центральных осей

Круг Мора моментов инерции сечений Кроме аналитического метода определения положения главных осей и вычисления главных моментов инерции по формулам можно использовать графический метод – построение круга Мора моментов инерции сечения. Графический метод может использоваться как независимо, так и для контроля правильности аналитических расчетов. При аккуратном построении круга Мора графический метод позволяет определить положение главных осей и значения главных моментов инерции с точностью 3-х – 5-ти процентов

Геометрические характеристики прокатных профилей Для сечений, составленных из прокатных профилей (двутавры, швеллера, уголки) геометрические характеристики определяются в соответствии с ГОСТ (государственный общероссийский стандарт). В таблицах прокатных профилей приводятся все размеры, согласно которым изготовляются прокатные профили, а так же значение геометрических характеристик - осевых моментов инерции, моментов сопротивления, радиусов инерции, координаты центра тяжести сечения, а также значение , определяющего положение главных осей несимметричных сечений (неравнобокий уголок).

Определяем координаты центров тяжести элементов сечения относительно центральных осей

Правило знаков внутренних усилий Рамы представляют собой геометрически неизменяемую систему, состоящую из стержней, расположенных в плоскости (плоские рамы) или в пространстве, жестко или шарнирно соединенных между собой.

Характерные особенности эпюр внутренних усилий в рамах и контроль за правильностью их построения. Нормальные силы на участках рамы, при отсутствии продольных распределенных нагрузок, постоянны. Для контроля за правильностью вычисления и построению эпюр поперечных сил и изгибающих моментов используют дифференциальные соотношения Журавского

Порядок расчета рамы Определяются опорные реакции. Простые статически определимые рамы, состоящие из жестко соединенных стержней, имеют три опорных стержня, не пересекающихся в одной точке – трехопорная рама, или одну опору с жестким защемлением - консольная рама. В трехопорной раме опорные реакции действуют вдоль опорных стержней. В консольной раме в защемлении действуют две взаимно перпендикулярные реакции и опорный момент. Направление опорных реакций (вправо, влево от сечения опорного стержня) и опорного момента выбирается произвольно. 

«Расчет трехопорной рамы»

 

Изучение сопротивления материалов требует решения конкретных задач, что позволяет глубже понять теоретические основы дисциплины. В настоящей работе рассмотрены типовые задачи по следующим разделам курса сопротивления материалов:

Расчет статически неопределимых стержней, работающих на растяжение (сжатие).

Определение геометрических характеристик сечений.

Расчет трехопорных рам. Построение эпюр нормальных сил Nx, поперечных сил Qy и изгибающих моментов Mz.

По перечисленным темам студенты выполняют курсовые работы. Кроме примеров выполнения курсовых работ в методических рекомендациях, даны решения и некоторых других задач по излагаемым темам. Каждый раздел предваряется краткими сведениями из теории, необходимыми при решении рассматриваемых задач.

Расчет статически неопределимых стержней

и стержневых систем, испытывающих растяжение

Статически неопределимыми системами называются системы, для которых реакции связей и внутренние усилия не могут быть определены при использовании только уравнений статики (уравнений равновесия).

Степенью статической неопределимости стержневой системы называется число лишних неизвестных, определяемых по формуле

 Л = Н – У , (1.1)

где Н – общее число неизвестных реакций связей и внутренних усилий; У – число независимых уравнений статики, которое может быть составлено для данной стержневой системы; Л – число лишних неизвестных – степень статической неопределимости.

В зависимости от типа стержневой системы, типов входящих в нее стержневых элементов и видов их соединений, формула (1.1) может конкретизироваться.

Для определения неизвестных в статически неопределимых системах к уравнениям статики добавляются уравнения деформаций системы. Порядок решения статически неопределимых систем следующий:

1. Заданную систему превращают в основную систему.

Основной системой называется статически определимая и геометрически неизменяемая система, получаемая из заданной путем отбрасывания лишних связей и замены их неизвестными силами. Для статически неопределимой системы можно построить бесконечное число основных систем.

Составляют уравнения неразрывности деформаций – условия соответствия перемещений в основной системе в местах отброшенных связей перемещениям в тех же точках заданной системы.

Решая систему уравнений неразрывности деформаций, определяют неизвестные усилия, заменяющие действие отброшенных связей.

Проводят полный расчет основной системы - определяют необходимые усилия и перемещения в основной системе от действия заданной нагрузки и найденных неизвестных реакций связей.

Усилия и перемещения, определенные таким образом в точках основной системы будут равны усилиям и перемещениям в соответствующих точках заданной системы.

Сложные статически неопределимые системы, в том числе статически неопределимые фермы (элементы ферм работают на растяжение, сжатие) и статически неопределимые рамы, рассматриваются в курсе строительной механики стержневых систем. В курсе сопротивления материалов рассматриваются обычно простейшие статически неопределимые системы, к которым относятся:

а) прямые стержни постоянного, кусочно-постоянного и переменного сечений, закрепленные с двух сторон, от нагрузки действующей вдоль оси стержня;

б) системы шарнирно соединяемых стержней с возможным включением жестких недеформируемых элементов.

Следствие из 1-й и 2-й аксиом. Действие силы на абсолютно твердое тело не изменится, если перенести точку приложения силы вдоль ее линии действия в любую другую точку тела.

Аксиома 3 (аксиома параллелограмма сил). Две силы, приложенные к телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю параллелограмма, построенного на этих силах, как на сторонах (рис. 3).

Рис. 3

R = F1 + F2

Вектор R, равный диагонали параллелограмма, построенного на векторах F1 и F2, называется геометрической суммой векторов.

Аксиома 4. При всяком действии одного материального тела на другое имеет место такое же по величине, но противоположное по направлению противодействие.

Аксиома 5 (принцип отвердевания). Равновесие изменяемого (деформируемого) тела, находящегося под действием данной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым).

Тело, которое не скреплено с другими телами и может совершать из данного положения любые перемещения в пространстве, называется свободным.

Тело, перемещениям которого в пространстве препятствуют какие-нибудь другие, скрепленные или соприкасающиеся с ним тела, называется несвободным.

Все то, что ограничивает перемещения данного тела в пространстве, называется связью.

Сила, с которой данная связь действует на тело, препятствуя тем или иным его перемещениям, называется силой реакции связи или реакцией связи.

Реакция связи направлена в сторону, противоположную той, куда связь не дает перемещаться телу.

Аксиома связей. Всякое несвободное тело можно рассматривать как свободное, если отбросить связи и заменить их действие реакциями этих связей.


На главную