Колебания Упругая волна Когерентные источники Угловая дисперсия абсолютно чёрное тело Монохроматическая волна момент импульса Атом водорода Уравнения движения Полевые уравнения проводник с током в магнитном поле Электродвижущая сила

ЗАКОН СМЕЩЕНИЯ ВИНА – при повышении температуры максимум энергии в спектре излучения абсолютно черного тела смещается в сторону более коротких волн и притом так, что произведение длины волны, на которую приходится максимум энергии излучения, и абсолютной температуры тела равно постоянной величине.

Волновое уравнение

Применяя второй закон Ньютона к упругой среде, можно получить дифференциальное уравнение в частных производных, решением которого будет уравнение волны. Логическая схема этого вывода такова:



15.3.1. Вывод закона Гука для бесконечно малого упругого стержня Медный шарик диаметром 0,1 см, имеющий заряд 1 нКл, помещен в масло. Какое расстояние и в каком направлении пройдет шарик за 1 с, если вся система находится в однородном, направленном вертикально вверх поле 10 кН/Кл? Сопротивлением среды пренебречь. Начальная скорость шарика равна нулю.

Выделим элемент упругого стержня, длиной Δx.

Закрепим левую часть этого элемента (второй рисунок), правую сместим на величину Δξ вдоль оси x.

- закон Гука.

Здесь коэффициент kупр, характеризующий упругость стержня, зависит от материала стержня, его длины и площади сечения. Длинный прямой цилиндрический стержень квадратного сечения. Найти E электрического поля на поверхности стержня в точках, равноудаленных от его ребер.

15.3.1.1. Нормальное напряжение и относительная деформация

Введем:

     - нормальное напряжение,

       - относительная деформация.

При Δx → 0

.

Перепишем , выразив F и Δξ через σ и ε :

или

.


15.3.1.2. Модуль Юнга

Величина не зависит от длины и сечения стержня, она определяется только упругими свойствами материала, ее называют модулем Юнга материала:

.


15.3.1.3. Закон Гука

Тогда связь нормального напряжения σ и относительной деформации ε будет иметь вид:

.

Это выражение тоже носит название закона Гука.


15.3.2. Вывод волнового уравнения из .

Пусть волна распространяется вдоль упругого стержня. Рассмотрим элемент этого стержня, его длина равна Δx в невозмущенном состоянии. Пусть при распространения волны левая часть этого элемента сместится на величину ξ(x), а правая - на величину ξ(x + Δx), не равную смещению левой части.

.

В нашем примере стержень растянут внешними силами:

Сумма этих сил равна:

.

Домножим и поделим последнее выражение на Δ x. Величина

при Δx → 0 дает вторую производную от "кси" по x, т.е. .

Тогда .

Масса нашего элемента , его ускорение

,

тогда преобразуется в

,

или

   - волновое уравнение.

Проверим, будет ли его решением.

Откуда

.

Т.к. , то фазовая скорость упругой продольной волны:

,

и волновое уравнение можно записать в виде:

.

Для волны, распространяющейся в произвольном направлении волновое уравнение имеет вид:

.


ЗАКОНЫ ВНЕШНЕГО ФОТОЭФФЕКТА максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности;

Колебания, оптическая физика Электромагнитное поле Электромагнитное взаимодействие